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ABSTRACT 1 
 2 
To better understand bicyclists’ preferences, we used bicycle-mounted GPS units to 3 
observe the behavior of 162 bicyclists for several days each.  Trip purpose and several 4 
other trip-level variables were recorded by the cyclists, and the resulting trips were coded 5 
to a highly detailed bicycle network.  We then used the 1,449 valid non-exercise trips to 6 
estimate a bicycle route choice model.  As part of this research, we developed a choice 7 
set generation algorithm based on multiple permutations of labeled path attributes, which 8 
seemed to out-perform comparable implementations of other route choice set generation 9 
algorithms.  The choice model was formulated as a Path-Size Logit model to account for 10 
overlapping route alternatives.  Estimation results are intuitive and suggest that cyclists 11 
are sensitive to the effects of distance, turn frequency, slope, intersection control, and 12 
traffic volumes.  In addition, cyclists appear to place relatively high value on off-street 13 
bike paths, enhanced neighborhood bikeways (bicycle boulevards), and bridge facilities.  14 
Finally, estimation results support segmentation by commute versus non-commute trip 15 
types.  The route choice model presented in this paper is currently being implemented as 16 
part of the regional travel forecasting system for Portland, Oregon, U.S.A. 17 

18 
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INTRODUCTION 1 
 2 
Non-motorized travel options have been largely ignored in regional transportation 3 
planning studies in the U.S., where decisions on more resource-intensive investments in 4 
highway and transit facilities have been of primary concern.  Recently, however, policy-5 
maker interest in sustainable transportation systems and healthier lifestyles has shifted 6 
some of the decision-making focus to bicycling and walking and the extent to which the 7 
urban travel environment supports these alternative modes.  8 
 To our knowledge, the practice in operational travel forecasting models used in 9 
North America has been to assume that cyclists choose the minimum-distance path 10 
between origins and destinations using a fixed travel speed, without consideration of 11 
network attributes.  Travel environment attributes, such as slope, traffic volumes, and the 12 
presence of on and off-street bikeways are not considered.  Moreover, extant models do 13 
not differentiate between bicycle trip purposes. 14 
 From March through November, 2007, we collected detailed survey data 15 
revealing the actual paths taken by 164 bicyclists over the course of several days, using 16 
global positioning system (GPS) tracking devices.  The data were mapped to 17 
transportation network facilities, creating an enhanced bicycle network Geographic 18 
Information System (GIS) map file showing facility types, bike lanes and off-road trails.  19 
Each participant also provided trip purpose and weather conditions. 20 
 In this paper, we present a bicyclist route choice model developed from the data 21 
gathered in 2007.  The model is currently being implemented in the regional travel 22 
forecasting framework for Oregon Metro, the metropolitan planning organization for the 23 
Portland region and a regionally-elected governing body.  Metro Council is keenly 24 
interested in the capability of the modeling tool to project use of bicycle infrastructure 25 
investment alternatives and to derive economic welfare measures from such analysis.  To 26 
our knowledge this is the first bicycle route choice model to be developed from revealed 27 
preference data that were generated through GPS methods. 28 
 In the remainder of this paper we review the existing literature on bicycle route 29 
choice modeling; describe the person, GPS, and network data used in model 30 
development; briefly describe important modeling assumptions regarding choice set 31 
generation and overlapping alternatives; and present the model specification and 32 
estimation results.  Finally, we conclude with an assessment of what we believe to be the 33 
important modeling and policy implications of this research and suggest possible avenues 34 
for further development of the model.  35 
 36 
REVIEW OF EXISTING BICYCLE ROUTE CHOICE MODELING EFFORTS 37 
 38 
Most existing work on bicyclist route choice consists of small, targeted studies focusing 39 
on only a few variables. Sener et al. (1) provided a recent comprehensive review of 40 
published work. The primary data collection strategies have been recalled paths and 41 
binomial or trinomial choice stated preference surveys. 42 

Stated Preference Studies 43 
Stated preference studies have dominated the literature due to several appealing 44 
characteristics. Detailed travel network data are unnecessary. There is no need to solve 45 



2 
 

 

the formidable problem of generating alternative routes. Model specification and 1 
estimation are also simpler due to the “clean” data and limited number of alternatives. 2 
From a policy perspective, the usual advantage of stated preferences for testing rare or 3 
nonexistent features also applies. 4 
  There are drawbacks to stated preference data for cyclist route choice. The usual 5 
technique in existing studies has been to show respondents a sequence of side-by-side 6 
comparisons from which a binary choice is made (see, for example 2, 3, 4). Sener and 7 
Bhat (1) used this technique with three alternatives.  It is difficult to know how well a 8 
participant can map these textual, or occasionally pictorial, representations to her 9 
preferences for real facilities. Many salient features of a route are sure to be missing on a 10 
piece of paper or computer screen. Also, although the choice set is in a sense controlled, 11 
it seems likely that respondents have in mind their own usual routes as points of 12 
comparison. Strategic bias is a possibility if participants think responses might influence 13 
policy outcomes. None of this is to say stated preference studies are not useful and the 14 
results valid, only that their advantages in execution involve tradeoffs. 15 
  Landis et al. (5) conducted an interesting variation on the typical stated preference 16 
method. Participants actually rode predefined alternative routes before evaluating each. 17 
There still may be a problem assuming cyclists can evaluate an unknown route in the 18 
same way they do a familiar one, but the technique does promise greater realism. 19 
  The stated preference projects most comparable with our research are two similar 20 
studies of route choice using web-based surveys (6, 1). Cyclists were provided with a 21 
base route and one or two alternatives with carefully designed characteristics. Binary 22 
Logit (6) and Mixed Multinomial Logit (1) models were estimated using the stated 23 
preference data along with personal characteristics of participants. Taking into account 24 
specific data and modeling differences, we found the results to generally agree with our 25 
own, with some interesting exceptions. More specific comparisons are provided in the 26 
model estimation section of this paper. 27 
 28 
Revealed Preference Studies 29 
 30 
A handful of revealed preference studies have been undertaken on this topic, but in 31 
general they are limited studies that do not estimate a full route choice model. Most 32 
commonly, cyclists have been asked to recall routes. The routes are then compared with 33 
pre-selected routes based on shortest paths or other definitions of optimal paths (7, 8). 34 
These studies have the advantage of using actual routes and network data. The ability of 35 
cyclists to accurately recall routes is a question, but it may be quite accurate for habitual 36 
routes like commute trips. The larger shortcoming of these studies is the limited choice 37 
sets and lack of compensatory choice models.  38 

 39 
DATA DESCRIPTION 40 
  41 
This research relies heavily on GPS data collected from March through November 2007, 42 
by 162 bicyclists recruited from throughout the Portland metropolitan area.  After several 43 
screening steps, 1,449 non-exercise trips were available for the analysis.   44 

This research also relies heavily on accurate geographic information system (GIS) 45 
mapping of an urban street network and off-street bike and multi-use paths, as well as 46 
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related network attributes.  The base network was provided by Oregon Metro, the 1 
regional planning organization, and we made numerous updates to make the network 2 
routable.  In particular, ensuring that overpasses, underpasses, and one-way streets were 3 
coded correctly proved challenging.  A full report describing the GPS data collection 4 
methods and the processes used to prepare the data for our research may be found in the 5 
report by Dill and Gliebe (9).   A summary of the important features of the data for the 6 
purposes of route choice modeling is provided below. 7 
 8 
Participants and Bicycle Trips 9 
 10 
GPS participants were outfitted with small hand-held devices which they clipped onto 11 
their bicycles.  They were instructed to enter both weather and trip purpose information 12 
and to record the beginning and end of a trip, defined by reaching a particular destination.  13 
They also completed demographic and attitudinal surveys. 14 
 The participants in this study were primarily regular bicyclists, who agreed to 15 
participate in the GPS portion of the study following an initial set of telephone 16 
interviews.  Although regular cyclists are more likely to be male (80 percent according to 17 
the phone survey), we were able to recruit a GPS sample composed of 44 percent 18 
females.  Among all respondents, 89 percent were between the ages of 25 and 64.  19 
Compared with the phone survey of bicyclists used to screen and recruit them, the GPS 20 
participants were slightly older, were more likely to have a college degree, had higher 21 
incomes, and were more likely to have full-time jobs.  They were also more likely live in 22 
a two-person household, and only 7 percent lived in a household without a car.  The 23 
phone survey participants had a demographic comparable to the general population.   24 
 25 
GPS Survey Records 26 
 27 
GPS tracks were matched to network links using ArcGIS and custom scripts written in 28 
the Python programming language (10).  Especially challenging was eliminating spurious 29 
u-turns caused by GPS signal “bounce.”  In some cases, links had to be added to the 30 
network where “cut-throughs” and other informal or unmapped links were used.  31 
Participants viewed the processed paths and noted GPS errors for manual correction.  32 
Further details of the GPS data are available in a separate report (9).    33 

While participating in the study, GPS respondents recorded on average 12 total 34 
non-exercise bicycle trips at an average rate of 2.5 per day.  About 30 percent of trips 35 
were commute trips (home to work or work to home). The average trip distance was 2.2 36 
miles (3.5km) for non-commute trips and 3.7 miles (6km) for commute trips.  About 80 37 
percent of total miles recorded were bicycled within the Portland city limits with the 38 
balance located in the greater Portland region.  39 
 Observed paths were on average somewhat longer than the shortest network 40 
paths: by 12 percent for non-commute trips and 11 percent for commute trips.   41 
A little more than half (53%) of recorded miles were ridden on facilities with bicycle 42 
infrastructure, including bike lanes (29%), off-street paths (13%), and bike boulevards 43 
(11%). Bike boulevards are improved neighborhood bikeways with special features to 44 
reduce auto speeds and volumes while giving bicycles increased priority at intersections.  45 
Further descriptive analysis is available in a separate report (9). 46 
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Network 1 
 2 
The network model developed for this research included about 88,000 undirected links 3 
and 66,000 nodes.  This network was constructed as much as possible to include all links 4 
available for bicycle travel.  This included a large number of links not usually found in an 5 
auto travel modeling network such as minor residential streets, off-street bike and 6 
multiuse paths, alleyways, and some private roads explicitly open to bicycles.  The bike 7 
network did not include facilities where bicycle use was legally restricted, mainly urban 8 
freeways. 9 
 The City of Portland provided interpolated average daily traffic volumes for 10 
nearly all streets in the study area based on hose count data.  Where missing, volumes 11 
were estimated based on functional class.  Turns were calculated using a combination of 12 
street name and geometry.  A 10 meter digital elevation model (DEM) was used to 13 
measure elevation gain and loss at roughly 10 meter increments along each link.  Bicycle 14 
facilities, grade separation, intersection control, and one-way restrictions were provided 15 
by Oregon Metro.  When generating route alternatives, one-way streets were treated as 16 
open to bicycling but with additional impedance based on observed speed reduction (70 17 
percent). 18 
 19 
MODELING ASSUMPTIONS 20 
 21 
Choice Set Generation 22 
 23 
Generating the set of alternative routes considered for each trip was the most difficult and 24 
time-consuming part of our analysis. The size and density of the Portland bicycle travel 25 
network greatly increased the task’s complexity.  In addition, the lack of existing 26 
revealed preference bicycle route choice studies demanded a careful rethinking of 27 
existing generation techniques. Common algorithms based on travel time and street 28 
hierarchy were not directly applicable, since bicycle travel times are not affected by 29 
speed limits, congestion, and functional class in the same ways as auto travel times.   30 
  We experimented with three common choice set generation methods: K-shortest 31 
paths, simulated shortest paths, and route labeling, none of which proved entirely 32 
satisfactory.  Based on these experiments and our own hypotheses about bicyclists’ 33 
choice set generation process, we developed a modified method of route labeling (11). 34 
Route alternatives were chosen by maximizing individual criteria, subject to a flexible, 35 
calibrated distance constraint.  The new method appeared to outperform existing 36 
techniques developed for auto route choice on several key criteria.  Readers are referred 37 
to the cited paper for further description of the Calibrated Labeling Method. 38 
 Applied to our bicycle travel network, the calibrated labeling algorithm produced 39 
a median of 20 alternative paths for each trip.  The number of alternatives varied across 40 
choice situations, increasing with both trip distance and network density.  The chosen 41 
alternative was not always reproduced exactly by the algorithm, and in such cases it was 42 
added to the choice set.  For a small number of trips (15 out of 1,464), no alternative to 43 
the chosen route was found.  These “captive” trips were not included in the model 44 
estimation. 45 
 46 
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Overlapping Alternatives 1 
 2 
Where alternate paths share common links, they also presumably have correlated error 3 
components. This violates the multinomial logit (MNL) model assumption of 4 
independently distributed errors across alternatives. From a statistical point of view, an 5 
MNL route choice model will tend to assign counter-intuitively high probabilities to 6 
routes that share common network links. From a behavioral point of view, we might say 7 
that the MNL considers overlapping routes distinct alternatives; whereas, cyclists may 8 
consider such routes jointly as minor variants of a single alternative.  9 
 There are two options to overcome the overlapping routes problem (12).  A 10 
correction factor can be applied to partially adjust the utilities for overlap, leading to the 11 
Path-Size Logit (PSL) model.  Alternatively, more complex model forms may be 12 
specified that allow for correlated errors, including the multinomial probit model, mixed 13 
logit models, and closed-form members of the generalized extreme value (GEV) class of 14 
models. 15 
 Due to the very large number of potential alternatives, we chose the PSL 16 
approach, retaining the underlying MNL structure.  We recognized the need to be able to 17 
apply the model for prediction across a very complex, detailed network.  This 18 
requirement made the specifications of overlapping route calculations and nest 19 
memberships needed for the various probit, mixed logit, and GEV models seem 20 
somewhat intractable over such a large computational space.  In addition, it has been 21 
shown that more complex model forms may not yield consistent estimates when only a 22 
small proportion of potential alternatives can be sampled (13). 23 
 A path size factor was calculated directly from route alternatives and network 24 
geometry, avoiding direct calculation of correlations across alternatives. The general 25 
form for the j alternatives in choice set Cn  is specified as: 26 
 27 
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 28 
where Γi are the links in alternative i, la is the length of link a, Li is the length of 29 
alternative i, and δaj equals 1 if j includes link a (12).  The parameter γ is a positive 30 
scaling term meant to penalize very long routes in a choice set.  Fixing or estimating γ>0 31 
has been shown empirically to improve route choice model fit (14, 15, 16, 17); however, 32 
it has recently been shown that γ>0 can result in questionable utility corrections and 33 
illogical path probabilities (12).  In addition, our choice set generation method makes it 34 
unlikely that improbably long alternative paths will be included in our analysis. For these 35 
reasons, the path-size correction factor in equation 1 is used with γ=0, essentially 36 
dropping the long-path correction factor and yielding the basic Path Size Logit (PSL) 37 
model (18). 38 
  While relatively simple, the PSL model has been shown to perform well relative 39 
to more complex model forms such as the cross-nested logit (CNL), although existing 40 
comparisons were performed with the generalized PS factor including γ>0 (15,16,17). 41 
While nested logit models should outperform the PSL specification, they are limited in 42 
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real network applications due to the huge number of parameters that would have to be 1 
estimated to exploit their full flexibility (15, 12). Some promising work has been 2 
presented recently on using sub-network components as an improvement to the PSL 3 
which maintains much of its estimation simplicity (12).  This latter method has not yet 4 
been applied to a real network problem but merits further research attention. 5 
  The remainder of this paper presents results obtained from the following 6 
specification of the Path Size Logit probability: 7 
 8 

 
      (2) 
 

 9 
where PS is the path size factor from equation (1) with γ=0. Since PS will always fall 10 
between 0 and 1, ln(PS) will be negative, consistent with a utility reduction proportional 11 
to the degree of overlap. 12 
 13 
Panel Effects 14 
 15 
Our estimation dataset includes observations for 154 participants over multiple trips. It is 16 
likely that an individual’s series of route choices are correlated to some extent. The 17 
inclusion of multiple trip purposes and the generally short period of observation probably 18 
limit such correlation. Furthermore, an investigation of commute trip sequences, which 19 
we might expect to be the most regular, showed noticeable route choice variation across 20 
trips. It did not seem as though these cyclists were “locked in” to a fixed route. For 21 
simplicity, trips were assumed to be independent and pooled for analysis. An obvious, but 22 
non-trivial future extension would be to consider different specifications including 23 
individual-specific effects. 24 
 25 
MODEL RESULTS 26 
 27 
Table 1 describes the variables used in the route choice model.  Table 2 presents the full 28 
estimation results from our final model specification.  Path-size correction factors were 29 
calculated using a custom Python script.  Choice model estimation was performed using 30 
the freely available BIOGEME package (19). 31 
 32 
Distance, slope, and turns 33 
 34 
As expected, cyclists prefer shorter routes, all else equal.  Log distance outperformed 35 
other distance specifications, suggesting that relative rather than absolute route deviations 36 
are what matter to cyclists.  This result has some behavioral appeal.  Implied is that a 37 
cyclist would be equally likely to go 1 mile out of her way on a 5 mile trip as 0.2 miles 38 
out of her way on a 1 mile trip.  A fixed distance, say one mile, is perceived as more 39 
costly the shorter the trip.  On a longer trip, even a one mile increment might not always 40 
be discernible.  All else equal, a 1 percent increase in distance reduces the probability of  41 
  42 
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 1 
TABLE 1  Variable Descriptions 
Variable Description Mean Present in 

proportion alts 
(n=29,090) 

Bridge w/ bike lane bridge with on-street bike lane dummy 
variable 

0.05 

Bridge w/ sep. facility bridge with improved, separated bike 
facility 

dummy 
variable 

0.22 

Prop. upslope 2-4%  Proportion of route along links with 
average upslope (gain/length) of 2-4% 

0.10 0.90 

Prop. upslope 4-6% Proportion of route along links with 
average upslope (gain/length) of 4-6% 

0.03 0.70 

Prop. upslope 6%+ Proportion of route along links with 
average upslope (gain/length) of 6%+ 

0.02 0.68 

Distance (mi) distance of route in miles 4.48 1.00 
Path size (0-1, 1=unique) path size (see section 4 for formula) 0.31 1.00 
Left turn, unsig., AADT 
10-20k (/mi) 

left turn without traffic signal and parallel 
traffic volume 10,000-20,000 per day 

0.11 0.36 

Left turn, unsig., AADT 
20k+ (/km) 

left turn without traffic signal and parallel 
traffic volume 20,000+ per day 

0.08 0.18 

Prop. bike boulevard proportion of route on designated bicycle 
boulevard (improved neighborhood 
bikeway with traffic calming, diversion, 
and enhanced right of way) 

0.10 0.53 

Prop. bike path proportion of route on off-street, regional 
bike path (i.e. not minor park paths, 
sidewalks, etc.) 

0.04 0.41 

Prop. AADT 10-20k w/o 
bike lane 

proportion of route on streets with traffic 
volume 10,000-20,000 per day without a 
bike lane  

0.08 0.73 

Prop. AADT 20-30k w/o 
bike lane 

proportion of route on streets with traffic 
volume 20,000-30,000 per day without a 
bike lane 

0.04 0.46 

Prop. AADT 30k+ w/o 
bike lane 

proportion of route on streets with traffic 
volume 30,000+ per day without a bike 
lane 

0.02 0.26 

Traffic signal exc. right 
turns (/mi) 

left turns and straight movements through 
traffic signals per mile 

1.84 0.90 

Stop signs (/mi) turns or straight movements through stop 
signs per mile 

3.12 0.95 

Turns (/mi) left and right turns per mile 3.64 1.00 
Unsig. cross AADT 
10k+ right turns (/mi) 

right turns at unsignalized intersections 
with cross traffic volume 10,000+ per day 

0.16 0.44 

Unsig. cross AADT 5-
10k exc. right turns (/mi)  

left turns and through movements at 
unsignalized intersections with cross 
traffic volume 10,000-20,000 per day  

0.56 0.72 

Unsig. cross AADT 10-
20k exc. right turns (/mi)  

left turns and through movements at 
unsignalized intersections with cross 
traffic volume 10,000-20,000 per day  

0.42 0.72 

Unsig. cross AADT 
20k+ exc. right turns 
(/mi) 

left turns and through movements at 
unsignalized intersections with cross 
traffic volume 20,000+ per day 

0.16 0.52 

 2 
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 1 
TABLE 2  Route Choice Model Estimation Results 
Variable Est. coeff. t-stat 
Ln(distance) -5.22 -10.9 
Ln(distance) * commute -3.76 -5.14 
Turns (/mi) -0.371 -15.4 
Prop. upslope 2-4 % -2.85 -4.57 
Prop. upslope 4-6 % -7.11 -6.11 
Prop. upslope >= 6 % -13.0 -8.57 
   
Traffic signal exc. right turns (/mi) -0.186 -5.73 
Stop sign (/mi) -0.0483 -2.10 
Left turn, unsig., AADT 10-20k (/mi) -0.782 -4.19 
Left turn, unsig., AADT 20k+ (/mi) -1.87 -4.70 
Unsig. cross AADT >= 10k right turn (/mi) -0.338 -2.32 
Unsig. cross AADT 5-10k exc. right turn (/mi) -0.363 -5.39 
Unsig. cross AADT 10-20k exc. right turn (/mi)  -0.516 -5.39 
Unsig. cross AADT 20k+ exc. right turn (/mi) -2.51 -11.5 
   
Prop. bike boulevard 1.03 5.17 
Prop. bike path 1.57 4.64 
Prop. AADT 10-20k w/o bike lane -1.05 -3.02 
Prop. AADT 10-20k w/o bike lane * commute -1.77 -2.28 
Prop. AADT 20-30k w/o bike lane -4.51 -6.04 
Prop. AADT 20-30k w/o bike lane * commute -3.37 -2.24 
Prop. AADT 30k+ w/o bike lane -10.3 -4.67 
Prop. AADT 30k+ w/o bike lane * commute -8.59 -1.96 
Bridge w/ bike lane 1.81 -4.71 
Bridge w/ sep. bike facility 3.11 -4.96 
   
Ln(path size) 1.81 20.78 
Number of observations 1,449 
Null log-likelihood -4058.7 
Final log-likelihood -3020.0 
Rho-square 0.256 

 2 
choosing a route by about 5 percent and 9 percent for non-commute and commute trips, 3 
respectively.  That cyclists are highly sensitive to distance is consistent with the observed  4 
data.  Half of all observed trips were less than 10 percent longer than the shortest path, 5 
and 95 percent of trips were less than 50 percent longer. 6 

Travel times in our sample were highly correlated with distance (r = 0.93) such 7 
that the two were more or less interchangeable.  That said, there are probably some minor 8 
travel time effects embedded in some of the non-distance variables as well.  Non-distance 9 
variables should be interpreted as the combination of travel time and non-travel time (e.g. 10 
perceived safety, effort, pleasantness, etc.) effects. 11 
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Turns likely delay cyclists, and they also add the mental cost of having to 1 
remember the correct sequence of turns.  As expected, turn frequency is a significant 2 
negative factor in route choice.  Once difficult left turns (across moderate to heavy traffic 3 
without a traffic signal) were accounted for, left and right turns were not significantly 4 
different, which seems reasonable.   5 

Since distance enters the model in log form, each of the other variables in the 6 
model have marginal rates of substitution that are constant with respect to percent 7 
distance.  Table 3 presents the estimation results in terms of this distance trade-off, which 8 
may be thought of as the distance value of each variable.  In the case of turns, for 9 
instance, the model predicts that an additional turn per mile (0.6 turns/km) is equal to a 10 
7.4 percent increase in non-commute distance and a 4.2 percent increase in commute 11 
distance. 12 
 Many permutations of elevation change and slope were tested, and the best 13 
performing specification was proportion of route length within three categories of 14 
average positive slope (gain/distance): 2-4 percent, 4-6 percent, and 6 percent.  For 15 
example, a link traversing 500 ft (150m) with 10 ft (3m) gross gain along the traversal 16 
would have an average upslope of 2 percent and would be coded as 500 ft (150m) in the 17 
2-4 percent upslope category.  The consistently negative and strong sensitivity to slope 18 
contrasts with stated preference work (1,6). 19 
 20 
Intersections 21 
 22 
Data on intersection control and traffic volumes allowed us to construct a number of 23 
detailed intersection variables.  Stop signs and traffic signals are delay factors for 24 
cyclists.  At the same time, depending on the amount of conflicting traffic, signals might 25 
also be attractive features for cyclists trying to travel through or make turns across busy 26 
intersections. 27 
 As anticipated, in general traffic signals and, to a lesser extent, stop signs decrease 28 
the utility of a route.  However, where conflicting traffic volumes are high, the positive 29 
effects of signals outweigh the negative.  Whether this is because signals actually reduce 30 
delay at busy intersections, because they increase perceived safety, or some combination 31 
of the two is unclear.  Right turns were excluded from most of the variables because such 32 
movements avoid most of the traffic conflicts and delays.  Model fit with different 33 
specifications supported this distinction.  To our knowledge, this is the first such result 34 
demonstrating the importance to cyclists of signalized intersections at busy street 35 
crossings. 36 
 37 
Facility Types 38 
 39 
Four bike-specific facility types were included in the final model: bike boulevards, off-40 
street bike baths, bike lanes, and separated bike facilities on bridges.  In addition, bike 41 
lanes were further divided into categories based on traffic volumes, and a separate 42 
category for bridge bike lanes was included.  Bike boulevards are always on low traffic, 43 
neighborhood streets.  Bike paths by definition have no motorized traffic.  In addition to 44 
the facility types in the final model, designated bike routes were also tested as a facility 45 
  46 
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TABLE 3  Relative attribute values 
Attribute Distance value (% dist) 
 Non-

commute 
 

Commute 
Turns (/mi) 7.4 4.2 
Prop. upslope 2-4 % 72.3 37.1 
Prop. upslope 4-6 % 290.4 120.3 
Prop. upslope >= 6 % 1106.6 323.9 
   
Traffic signal exc. right turns (/mi) 3.6 2.1 
Stop sign (/mi) 0.9 0.5 
Left turn, unsig., AADT 10-20k (/mi) 16.2 9.1 
Left turn, unsig., AADT 20k+ (/mi) 43.1 23.1 
Unsig. cross AADT >= 10k right turn (/mi) 6.7 3.8 
Unsig. cross AADT 5-10k exc. right turn (/mi) 7.2 4.1 
Unsig. cross AADT 10-20k exc. right turn (/mi)  10.4 5.9 
Unsig. cross AADT 20k+ exc. right turn (/mi) 61.7 32.2 
   
Prop. bike boulevard -17.9 -10.8 
Prop. bike path -26.0 -16.0 
Prop. AADT 10-20k w/o bike lane 22.3 36.8 
Prop. AADT 20-30k w/o bike lane 137.3 140.0 
Prop. AADT 30k+ w/o bike lane 619.4 715.7 
Bridge w/ bike lane -29.3 -18.2 
Bridge w/ sep. bike facility -44.9 -29.2 

 1 
type.  As expected, these unimproved bike routes were insignificant factors once the 2 
other variables were included in the model. 3 
 Bike boulevards and bike paths hold significant residual value even after 4 
controlling for all of the other variables in the model.  For non-commute trips, travel on 5 
bike boulevards is equivalent to decreasing distance by almost 18 percent; by 26 percent 6 
on bike paths.   7 

We tried many iterations of bike lane variables.  Because bike lanes in Portland 8 
are almost exclusively on busy arterial streets, it was difficult to tease out the effect of  9 
bike lanes from that of traffic volume.  In the final specification, bike lanes more or less 10 
exactly offset the negative effects of adjacent traffic but had no residual value of their 11 
own.  This is consistent with the idea that bike lanes provide cyclists their own space 12 
separate from traffic but beyond this are no more or less attractive than a basic low traffic 13 
volume street.  All else equal, the estimation suggests cyclists are willing to go 14 
considerably out of their way to use a bike boulevard or bike path rather than an arterial 15 
bike lane.  This is not to suggest bike lanes are not valuable; if the alternative is an 16 
arterial street without a bike lane, then a designated lane has considerable value to 17 
cyclists.  These results may not transfer to places where bike lanes are placed on low 18 
traffic volume streets. 19 
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On streets without bike lanes, cyclists are highly sensitive to high traffic volumes.  1 
In fact, the estimation suggests that for non-commute trips, streets with traffic volumes in 2 
excess of 20,000 vehicles per day would be used only if lower traffic alternatives 3 
required very long detours (in excess of 100 percent) or other strong deterrents such as 4 
steep hills.  Within the city, Portland’s bike network is fairly dense and well-developed, 5 
and it is not clear that this result would hold in places with a sparser network of bike 6 
facilities.  It seems unlikely that a cyclist would actually choose a route seven times 7 
longer to avoid traveling on a highway without a bike lane; more likely, he would not 8 
travel by bicycle at all.  Nonetheless, the result underscores the sensitivity of cyclists to 9 
high volumes of mixed traffic. 10 

The Willamette River splits Portland as it runs south to north, separating 11 
Portland’s central business district from largely residential areas east of the river.  A little 12 
more than a quarter of observed trips crossed the Willamette on one of eight bridges 13 
available to bikes.  Sampled cyclists were quite sensitive to bridge bike facilities.  For 14 
non-commute trips, a bridge with a bike lane was equivalent to a 29 percent reduction in 15 
distance up to almost 45 percent for a separated bridge facility.  Clearly, bridge facilities 16 
have a strong influence on cyclists’ route choices for trips crossing the river. 17 
  18 
Non-commute Versus Commute Trips 19 
 20 
In general, the model suggests that commuting cyclists are relatively more sensitive to 21 
distance and less sensitive to most other variables.  Commuting cyclists are likely under 22 
greater time pressure to reach their destination in the work direction.  It is also possible 23 
that the more habitual nature of commute trips makes commuters more aware of distance 24 
and time differences among competing routes.  It is also possible that commuters’ 25 
knowledge of the route allows them to mitigate some of the delay and safety issues on 26 
commute trips.  For example, they may learn the timing of traffic lights, how best to 27 
navigate intersections, and where to make difficult turns. 28 
 Exceptions to the above are found in the facility traffic volume attributes.  29 
Commuting cyclists are somewhat more sensitive to riding in high volumes of mixed 30 
traffic.  The finding is consistent with the fact commutes are more likely to occur during 31 
periods of peak traffic. 32 
  33 
Path-size Parameter 34 
 35 
The path-size parameter estimate’s positive coefficient is consistent with theory. It is 36 
significantly different from 1.0, which would be the expected value if the path-size 37 
parameter captured only the statistical error introduced by the independence from 38 
irrelevant alternatives (IIA) property of the MNL model. It has been suggested that the 39 
path-size parameter should not be arbitrarily fixed to 1.0, since it may have a meaningful 40 
behavioral interpretation (12). 41 
  In our case, estimating the parameter significantly improved model fit. Fixing the 42 
path-size parameter to 1.0 has the effect of reducing the magnitude of the distance 43 
coefficient while leaving the other parameters more or less unchanged. Since generated 44 
alternatives tend to cluster around the shortest-path, the greater than expected path-size 45 
correction may indicate unobserved disutility factors along shortest-path corridors. One 46 
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plausible explanation is that many shortest paths in Portland involve a handful of busy, 1 
diagonal arterials that cut across the otherwise regular grid. These streets have generally 2 
poor riding environments which may not be fully captured by our observed attributes. 3 
 Another interpretation is that cyclists in our sample are less likely to distinguish 4 
between overlapping routes than statistically expected. That is, cyclists may consider two 5 
routes that overlap for just 25 percent of their lengths to be more similar than the physical 6 
overlap suggests. Perhaps they tend to share particularly unpleasant segments such as the 7 
diagonal arterials mentioned in the previous paragraph. Consistent with this hypothesis, a 8 
multi-modal route choice study found that trip “legs” rather than distance may sometimes 9 
be a better overlap measure (14). 10 
 11 
CONCLUSIONS 12 
 13 
This paper outlined the development of a unique bicycle route choice model based on 14 
revealed preference GPS data.  The endeavor was made particularly challenging by the 15 
unusually large and dense travel network required to capture the options open to cyclists.  16 
A new choice set generation algorithm, dubbed the Calibrated Labeling Method, was 17 
developed to generate reasonable sets of alternatives after existing methods proved 18 
unsatisfactory. 19 
 The final model specification resulted in a rich range of insights into cyclist 20 
preferences which we are still exploring.  Distance, turn frequency, slope, intersections, 21 
facility types, and traffic volumes all contribute significantly to a route’s attractiveness to 22 
bicyclists.  Results highlight the importance for policymakers and planners of not only 23 
building bike facilities, but building them well.  Details like busy street crossing 24 
treatments, route “jogs” necessitating extra turns, and siting to avoid slopes greater than 2 25 
percent may prove as or more important than the facility itself.  That said, bike 26 
boulevards and off-street bike paths appear to have inherent value to cyclists beyond the 27 
detailed facility variables we were able to measure.  In other words, there is something 28 
more to a bike boulevard than low traffic volumes, improved street crossings, and 29 
“flipped” stop signs.  The something more may be explained by attributes we were 30 
unable to measure, such as parking and traffic speeds, or perhaps something more subtle 31 
like perceived safety in numbers or simplified navigation.  The results leave this 32 
intriguing question for future research. 33 
 The authors look forward to refining the model further.  They also await with 34 
interest the results of similar studies using revealed preferences in different locations.  35 
For now, the question of how the Portland-based data will generalize to other places 36 
remains an open one.  The model presented here is currently being implemented as a 37 
component of the regional travel demand forecasting model for the Portland region. 38 
 39 
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